UTAH VALLEY

vy

UTAH VALLEY

vy

Constructing an Assembler and Virtual Machine
Devin Wright
NCUR - 2021

UNIVERSITY

Assembler/Virtual Machine

UNIVERSITY

Recursion and Multithreading

Register Indirect Addressing, Loops, and

Conditionals ,

 Create a 2 pass Assembler Demonstrate Virtual Machine’s ability to handle recursion.

* Create a Virtual Machine Implement Multithreading.
e Test virtual machine with Simple program performing math Operations ° Add more opcodes for jump’ move, and compare instructions.
and printing characters/numbers Make VM capable of Register Indirect Addressing. ;; Test for overflow (SP < SL)
* Show VM capability by developing an assembly program that ;; Create activation record
Tokeni | | * Array Traversal :; Base Case if true JMP RETURN
oKenlzer COUNT |0 e Loops -
& e Fr— * Conditional (if, else) statements .. Test for overflow (SP < SI)
Grrlliee « Demonstrate byte addressability by accessing chars, :: create activation record
and load PR switching values, and performing various comparisons.
symbols into
the symbol - - ;; Test for underflow
table RS RG ;; deallocate current activation record
. . A 13 ;,; return
® Simple Grab value from ;; Put return address into Register
syntax errors Y 14 RG and treat as ;, Polint at previous activation record
reported | address ;; return to return address 1n Register
START 15 Store data currently in R2 into the location ——— | ro
I whose value was obtained from RG R R
BEGIN 27 Il
| Data (Directives) R2 Data (Directives) "2
RG# Memory R3 R3
Symbol Table Code Code | Ra
(Assembly after Loaded into R4 (I\,:\ssemt;ly after Loaded into
emo
Assembler Pass 2 COUNT 0 Hemery RS - o
Runtime Stack R6 Runtime Stack R6
Loader INDEX | 4 R1 INDEX D -99 — — -
Thread 2 Stack - activation records R7 Thread 2 Stack - activation records
for this thread for this thread
NEXT | 8 | i i
® Convert aésembly Q A 0 Register Data ‘\ oL Register Data sL
Ianguage Into byte R 12 Thread 1 Stack - activation records | SP Thread 1 Stack - activation records B SP
- or this threa for this thread
code and load into G 0 forhi threac B p _ Fp
memory. A 13 S 0 Register Data 4\ B B Register Data 4\ - SB
® Syntax and loading Y 14
errors reported. START | 15 while (running) {
BEGIN | 27 ! T\ D < G
9 1 4
0000 | 0000 000 00 00 00~ 0000 7 0000 'H 0000 | 0000
1001 | 0000 | 0000 H 0000 @ 0001 @ O0O0O & OOOO @ 0000 'H 0100 | OOOO | OOOO | 0000 G S D
break;
S _ S
Virtual Machine FETCH STR R1 INDEX
DECODE T ' for t 1 = 0; 1 < NUMREGISTERS; 1+4
| DAGS - GADS = #int
® Memory EXECUTE Memory| address] = registers|[i];
® Registers (Including SR tempSB++;
Program Counter) i Registers: int array _ _
® Instruction Register
: o Tri Tro Tra Tre Trs Tre [rv |po Functions and Runtime Stack
® OpCOdeS currentThread = (currentThread 4
® TJest assembly while(runningThreads|currentThread] =

orogram that loads * Implement the Runtime Stack
data into registers, I Implement a large assembly program managing Activation Records on the

prints characters, IR =9 |1 4 Runtime Stack for function calls..
performs some

Instruction Register: int array

currentThread (currentThread + 1)

math operations. nt tempSB = SB - (THREADSIZE);
l #Hf"“ ry: byte array Allocate: — o nt i = ©; i < NUMREGISTERS; i+
~T—T 7 PEP = FP SL Data (Directives) SL Data (Directives) ’ ’
toc FP =SP Code | Code | registers[i] = Memory[tempSB];
SP = SP - Activation Record Size I(\?es;ir:]yl;ly after Loaded into gﬁ\:;ir:ytgly after Loaded into 5T

SP SP

Runtime Stack Runtime Stack

Pass Parameters:
(SP) = Data

while (running) { SP = SP - Size of Data

CONCLUSIONS

FP FP

Deallocate: . . .
oF Sp = Fp Fully functional 2 pass and Assembler and Virtual Machine capable of

’ = : : . :
EP = PFP PEP = -1(First on Activation Record) Functions, Recursion, Arrays, and Multithreading.
| B — SB Return Address * Currently developing a Compiler to work directly on my
: . \ . .
SW1tcC h g (IR [] / SL Data (Directives) SL Data (Directives) ~ Data (Directives) Assembler/VIrtual Machine..

{

Code
(Assembly after Loaded into
Memory)

SP Runtime Stack

FP
PFP
Return Address

FP = -1(First on Activation Record)
SB eturn Address

Code
(Assembly after Loaded into
Memory)

SP Runtime Stack

Data

FP
PFP
Return Address

FP = -1(First on Activation Record)
SB eturn Address

Code
(Assembly after Loaded into
Memory)

SP Runtime Stack

Ep Data

PFP
Return Address

PFP = -1(First on Activation Record)
Return Address

Ve

SB

/L

ACKNOWLEDGEMENTS

I’d like to thank my mentor Dr. Curtis Ray Welborn for his
guidance and support throughout this project.

Thank you to all who came to learn about my Assembler and
Virtual Machine.

