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Devin Wright
NCUR - 2021

UNIVERSITY

Assembler/Virtual Machine
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Recursion and Multithreading

Register Indirect Addressing, Loops, and

Conditionals ,

 Create a 2 pass Assembler Demonstrate Virtual Machine’s ability to handle recursion.

* Create a Virtual Machine  Implement Multithreading.
e Test virtual machine with Simple program performing math Operations ° Add more opcodes for jump’ move, and compare instructions.
and printing characters/numbers  Make VM capable of Register Indirect Addressing. ;; Test for overflow (SP < SL)
* Show VM capability by developing an assembly program that ;; Create activation record
Tokeni | | *  Array Traversal :; Base Case if true JMP RETURN
oKenlzer COUNT |0 e Loops -
& e Fr— * Conditional (if, else) statements .. Test for overflow (SP < SI)
Grrlliee « Demonstrate byte addressability by accessing chars, :: create activation record
and load PR switching values, and performing various comparisons.
symbols into
the symbol - - ;; Test for underflow
table RS RG ;; deallocate current activation record
. . A 13 ;,; return
® Simple Grab value from ;; Put return address into Register
syntax errors Y 14 RG and treat as ;, Polint at previous activation record
reported | address ;; return to return address 1n Register
START 15 Store data currently in R2 into the location ——— | ro
I whose value was obtained from RG R R
BEGIN 27 Il
| Data (Directives) R2 Data (Directives) "2
RG# Memory R3 R3
Symbol Table Code Code | Ra
(Assembly after Loaded into R4 (I\,:\ssemt;ly after Loaded into
emo
Assembler Pass 2 COUNT 0 Hemery RS - o
Runtime Stack R6 Runtime Stack R6
Loader INDEX | 4 R1 INDEX D -99 — — -
Thread 2 Stack - activation records R7 Thread 2 Stack - activation records
for this thread for this thread
NEXT | 8 | i i
® Convert aésembly Q A 0 Register Data ‘\ oL Register Data sL
Ianguage Into byte R 12 Thread 1 Stack - activation records | SP Thread 1 Stack - activation records B SP
- or this threa for this thread
code and load into G 0 forhi threac B p _ Fp
memory. A 13 S 0 Register Data 4\ B B Register Data 4\ - SB
® Syntax and loading Y 14
errors reported. START | 15 while (running) {
BEGIN | 27 ! T\ D < G
9 1 4
0000 | 0000 000 00 00 00~ 0000 7 0000 'H 0000 | 0000
1001 | 0000 | 0000 H 0000 @ 0001 @ O0O0O & OOOO @ 0000 'H 0100 | OOOO | OOOO | 0000 G S D
break;
S _ S
Virtual Machine FETCH STR R1  INDEX
DECODE T ' for t 1 = 0; 1 < NUMREGISTERS; 1+4
| DAGS - GADS = #int
® Memory EXECUTE Memory| address] = registers|[i];
® Registers (Including SR tempSB++;
Program Counter) i Registers: int array _ _
® Instruction Register
: o Tri Tro Tra Tre Trs Tre [rv |po Functions and Runtime Stack
® OpCOdeS currentThread = (currentThread 4
® TJest assembly while(runningThreads|currentThread] =

orogram that loads * Implement the Runtime Stack
data into registers, I  Implement a large assembly program managing Activation Records on the

prints characters, IR =9 |1 4 Runtime Stack for function calls..
performs some

Instruction Register: int array

currentThread (currentThread + 1)

math operations. nt tempSB = SB - (THREADSIZE);
l #Hf"“ ry: byte array Allocate: — o nt i = ©; i < NUMREGISTERS; i+
~T—T 7 PEP = FP SL Data (Directives) SL Data (Directives) ’ ’
toc FP =SP Code | Code | registers[i] = Memory[tempSB];
SP = SP - Activation Record Size I(\?es;ir:]yl;ly after Loaded into gﬁ\:;ir:ytgly after Loaded into 5T

SP SP

Runtime Stack Runtime Stack

Pass Parameters:
(SP) = Data

while (running) { SP = SP - Size of Data

CONCLUSIONS

FP FP

Deallocate: . . .
oF Sp = Fp Fully functional 2 pass and Assembler and Virtual Machine capable of

’ = : : . :
EP = PFP PEP = -1(First on Activation Record) Functions, Recursion, Arrays, and Multithreading.
| B — SB Return Address * Currently developing a Compiler to work directly on my
: . \ . .
SW1tcC h g (IR [ ] / SL Data (Directives) SL Data (Directives) ~ Data (Directives) Assembler/VIrtual Machine..
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